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Abstract—In order to generalize to various tasks in the wild,
robotic agents will need a suitable representation (i.e., vision
network) that enables the robot to predict optimal actions
given high dimensional vision inputs. However, learning such
a representation requires an extreme amount of diverse training
data, which is prohibitively expensive to collect on a real robot.
How can we overcome this problem? Instead of collecting more
robot data, this paper proposes using internet-scale, human
videos to extract “affordances,” both at the environment and
agent level, and distill them into a pre-trained representation.
We present a simple framework for pre-training representations
on hand, object, and contact “affordance labels” that highlight
relevant objects in images and how to interact with them. These
affordances are automatically extracted from human video data
(with the help of off-the-shelf computer vision modules) and
used to fine-tune existing representations. Our approach can
efficiently fine-tune any existing representation, and results in
models with stronger downstream robotic performance across the
board. We experimentally demonstrate (using 3000+ robot trials)
that this affordance pre-training scheme boosts performance
by a minimum of 15% on 5 real-world tasks, which consider
three diverse robot morphologies (including a dexterous hand).
Unlike prior works in the space, these representations improve
performance across 3 different camera views. Quantitatively, we
find that our approach leads to higher levels of generalization in
out-of-distribution settings. For code, weights, and data check:
https://hrp-robot.github.io

I. INTRODUCTION

A truly generalist robotic agent must acquire diverse manipu-
lation skills (ranging from block stacking to pouring) that work
with novel objects and remain robust to realistic environmental
disturbances (e.g., lighting changes, small camera shifts). Due
to the scale of this challenge, the field has trended towards
learning these agents directly from data [51, 67], particularly
robot trajectories collected either by expert demonstrators or
autonomously by the agents themselves (via Reinforcement
Learning [86]). Unfortunately, there are innumerable object-
s/environments, so roboticists cannot tractably collect enough
real-world demonstration data and/or design a simulator that
captures all this diversity.

One promising solution for this “data challenge” is for the
robot to learn a suitable representation from Out-Of-Domain
(OOD) data that can be transferred into the robotics domain.
For example, prior work [64, 70, 57] trained self-supervised
image encoders on large scale datasets of human videos
(e.g., Ego4D [33]), using standard reconstruction objectives
and contrastive learning [65] objectives – e.g., Masked Auto-
Encoders [40] (MAE) and Temporal Contrastive Networks [79]
(TCN) respectively – developed by the broader learning
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Fig. 1: Pre-trained representations offer a scalable solution to
the robotics data bottleneck [64, 70, 57], but existing methods
fail to reliably improve over simple baselines like ImageNet [20,
7]. Thus, we present HRP, a method that mines affordances
(e.g., contact, hand pose, and object labels) from human videos
and uses them to improve self-supervised visual encoders.
Our best HRP representation consistently outperforms 6 SOTA
baselines by ≥ 20% across 5 diverse tasks and 3 camera views.

community. After pre-training, these representations are used to
initialize downstream imitation learning [78] algorithms. This
formula is extremely flexible, and can substantially reduce the
amount of robot data required for policy learning. However,
the representations are often only effective when using specific
camera views and robot setups. Furthermore, independent
evaluations [20, 7] recently showed that these representations
cannot improve (on average) over the most obvious baseline –
a self-supervised ImageNet representation [40, 21]!

This result is surprising since robot trajectories and human
video sequences share so much common structure: both modal-
ities contain an agent (e.g., human or robot) using their end-
effector (e.g., human hand, robot gripper) to manipulate objects
in their environment. Ideally, representations trained on this data
would learn useful object attributes (e.g., where to grasp a mug),
and spatial relationships between the end-effector and target
objects. We hypothesize that traditional self-supervised learning
objectives are unable to extract this information from human
video data, and that explicitly predicting these object/spatial
features would result in a stronger robotic representation (i.e.,
higher down-stream control performance). Our key insight is

https://hrp-robot.github.io
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Fig. 2: HRP fine-tunes a pre-trained encoder to predict three classes of human affordance labels via L2 regression. Specifically,
the network must predict future contact points, human hand poses, and the target object given an input frame from the
video stream. These affordance labels are mined autonomously from a human video dataset [33] using off-the-shelf vision
detectors [81]. HRP representations are then fine-tuned to solve downstream manipulation tasks via behavior cloning.

that abandoning self-supervision comes at minimal cost – the
necessary object and hand labels can be scalably mined using
off-the-shelf vision pipelines.

This paper proposes Human affordances for Robotic Pre-
training (HRP), a semi-supervised pipeline to learn effective
robotic representations from human video. HRP works in two
stages: first, it extracts hand-object “affordance” information –
i.e., which objects in the scene are graspable and how the robot
should approach them – from human videos using off-the-shelf
tracking models [81, 72]. These affordances are then distilled
into a pre-existing representation network (e.g., ImageNet
MAE [40]), before the policy fine-tuning stage. This paradigm
allows us to inject useful information into the vision encoder,
while preserving the flexibility of self-supervised pre-training –
i.e., all labels are automatically generated and the network can
be easily slotted into downstream robotic policies/controllers
via fine-tuning. To summarize, we learn stronger robotic
representations by predicting object interactions and hand
motion from human video dataset images (see Fig. 1).
Our investigations and experiments lead to the following
contributions:

1) We present a semi-supervised learning algorithm – HRP–
that leverages off-the-shelf human affordance models to
learn effective robotic representations from human video.
The proposed pipeline strongly outperforms representa-
tions learned purely via self-supervision.

2) Applying HRP to 6 pre-existing representations (including
ImageNet [21, 40], VC-1 [57], and DINO [8]) substantially
boosts robot performance. This conclusion is backed by
3000+ robot trials, and replicates across 3 camera views,
3 distinct robotic setups, and 5 manipulation tasks!

3) Our ablation study reveals that HRP’s three affordance
objectives (hand, object, and contact based loss terms) are
all critical for effective representation learning.

4) We show that HRP representations generalize across dif-
ferent imitation learning stacks – HRP improves diffusion
policy [11] performance by 20%!

5) Our best representation, which increases performance by
20% over State-of-the-Art (SOTA), will be fully open-
sourced, along with all code and data.

II. RELATED WORK

Representation Learning in Robotics: End-to-end policy
learning offers a scalable formula for acquiring robotic repre-
sentations: instead of hand-designing object detectors or image
features, a visual encoder is directly optimized to solve a
downstream robotic task [51]. Numerous works applied this
idea to diverse tasks including bin-picking [45, 52, 67], in-
the-wild grasping [35, 85], insertion [19, 51], pick-place [6],
and (non-manipulation tasks like) self-driving [5, 68, 10].
Furthermore, secondary learning objectives – e.g., dynamics
modeling [36, 91], observation reconstruction [63], inverse
modeling [17], etc. – can be easily added to improve data
efficiency. While this paradigm can be effective, learning purely
from robot data requires an expensive data collection effort
(e.g., using an arm farm [52, 45], large-scale tele-operation [6],
or multi-institution data collection [18, 12]), which is infeasible
for (most) task settings.

To increase data efficiency, prior work applied self-
supervised representation learning algorithms on out-of-domain
datasets (like Ego4D [33]), and then fine-tuned the resulting
representations to solve downstream tasks with a small
amount of robot data – e.g., via behavior cloning on ≤ 50
expert demonstrations [64, 57, 70], directly using them as
a cost/distance function to infer robot actions [56, 89], or
directly pre-training robot policies from extracted human
actions. [82, 58, 47]. While this transfer learning paradigm
can certainly be effective, it is unclear if these robotic
representations [57, 64, 70] provide a substantial boost over
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Fig. 3: We extract 3 affordances – contact heatmaps, hand
poses and active object bounding boxes – from human videos.

pre-existing vision baselines [20, 7], like ImageNet MAE [40]
or DINO [8]. One potential issue is that roboticists often
use the same exact pre-training methods from the vision
community, but merely apply them to a different data mix
(e.g., VC-1 [57] applies MAE [40] to Ego4D [33]). Thus,
the resulting representations are never forced to key in
on object/agent level information in the scene. This paper
proposes a simple formula for injecting this information into
a vision encoder, using a mix of hand and object affordance
losses, which empirically boost performance on robotic tasks
by 25%.

Affordances from Humans: HRP is heavily inspired by
the affordance learning literature in computer vision [29, 28].
These works use human data as a probe to learn environmental
cues (i.e., affordances) that tell us how humans might interact
with different objects. These include physical [23, 3, 34, 102,
37, 98, 61] and/or semantic [74, 76] scene properties, or
forecast future poses [49, 71, 26, 43, 41, 88, 1, 50, 87, 33, 24,
60, 30] Affordances can also be learned at object or part
levels [103, 25, 31, 62, 53, 93]. Usually such approaches
leverage human video datasets [33, 14, 16, 13] or use manually
annotated interaction data [54, 15, 81]. In addition to these
cues, robotic affordances must consider how to move before
and after interaction [2, 46]. A simple, scalable way to capture
this information is by detecting these cues from human hand
poses in monocular video streams [90, 46, 72, 55], which show
robots reaching for and manipulating diverse, target objects.
Our method combines these three approaches to create a human
affordance dataset automatically from human video streams.
The labels generated during this process are distilled into a
representation and used to improve downstream robotics task
performance.

III. PRELIMINARIES

A. Visual Representation Learning

Our goal is to learn a visual encoder network fθ that takes
an input image I and processes it into a low-dimensional

vector fθ(I) ∈ Rd. This resulting “embedding vector” would
ideally encode important scene details for robotic policy
learning – like the number and type of objects in a scene and
their relationship to the robot end-effector. In this paper, fθ is
a transformer network (specifically ViT-B [96], with patch size
16 and d = 768) parameterized with network weights θ. But
to be clear, all our methods are network architecture agnostic.

Self-Supervised Learning: The computer vision community
has broadly adopted self-supervised representation learning
algorithms that can pre-train network weights without using
any task-specific supervision. This can be accomplished using
a generative learning objective [22], which trains fθ alongside
a decoder network D that reconstructs the original input image
input from the representation. Another common approach is
contrastive learning [65, 39], which optimizes fθ to maximize
the mutual information between the encoding and the input
image (i.e., place “similar” images closer in embedding space).
In practice, these methods can learn highly useful features
for downstream vision tasks [40, 39], but struggle in robotics
settings [20, 7]. Our goal is to inject these features into an
existing self-supervised network, with an affordance-driven
fine-tuning stage.

B. Extracting Affordance Labels from Human Data

Before we can do any fine-tuning, we must first curate a
suitable human affordance dataset DH . Thankfully this task
can be done automatically using off-the-shelf vision modules,
applied to a set of 150K human-object interaction videos
from Ego4D (originally sampled by Nair et al. [64]). These
are subsets of larger videos (around 1.2K) videos, which were
further broken down into shorter clips. Each clip contains a
semantically meaningful action by the human. Each video
clip V contains image frames V = {I1, . . . , IT } that depict
human hands performing tasks and moving around in the
scene. From these images, we obtain contact locations, future
hand p-oses, and active object labels (examples in Fig. 3)
that capture various agent-centric properties (how to move
and interact) and environment centric properties (where to
interact) at multiple scales, i.e. contact-level and object-level.
The following sections detail how each of these labels were
generated.

Contact Locations: To extract contact locations for an image
It (with no object contact), we find the frame Ij ; j > t where
contact with a given object will begin, using a hand-object
interaction detection model [81]. Then, we use Ij to find
the active object Oj and the hand mask Mj . The points
intersecting Mj and Oj (acquired via skin segmentation) are
our contact affordances (Cj). To account for motion between
It and Ij , we compute the homography matrix between the
frames and project those points forward. This is done using
standard SIFT feature tracking [99]: Ct = Hj,tCj . In other
words, the contact locations denote where in It the human
will contact in the future. Note that there could be a different
number of points for each contact scenario, which is non-ideal
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Fig. 4: We present our policy training pipeline, which uses Behavior Cloning (BC) to train policy π, using optimal expert demonstrations.
The image observation (ot) is processed using our HRP representations resulting in a latent vector z. The policy uses z to predict end-effector
velocity actions (delta ee-pose/gripper), which are directly executed on the robot during test-time.

for learning. Thus, we fit a Gaussian Mixture Model with
k = 5 modes on Ct to make a uniform contact descriptor
– defined as the means ct of the mixture model. For more
details on extraction, we refer to Appendix F.

Future Hand Poses: This affordance label captures how
the human moves next (e.g., to complete a task or reach an
object), as the video V progresses. Given a current frame
It, we detect the human hand’s 2d wrist position (ht+k)
in a future frame It+k, where usually k = 30 (empirically
determined). This is done using the Frank Mocap [72] hand
detector. To correctly account for the human’s motion, these
wrist points are back-projected (again using the camera
homography matrix) to It to create the final “future wrist
label,” ht = Ht+k,tht+k.

Active Object Labels: In a similar manner to the contact
location extraction, we run a hand-object interaction detection
model [81] on V to find the image where contact began Ic. The
same detector is used to find the four bounding box coordinates
of the object that is being interacted with, which we refer to as
the “active object.” These coordinates bc are then projected to
every other frame It, using the homography matrix (see above).
This results in an active bounding box bt for each image in V .

IV. INTRODUCING HRP

A variety of visual pre-training tasks have been shown to help
with downstream robotic performance– ranging from simple
ImageNet classification [80] to self-supervised learning on
human video [70, 64, 56, 57, 66]. Although these approaches
operate on human videos and simple image frames, they fail
to explicitly model the rich hand-object contacts depicted. In
contrast, we believe explicitly modeling the affordances [28] in
this data could allow us to learn useful information about the
agent’s intents, goals, and actions. Indeed, past work has shown
that affordances can act as strong prior for manipulation [100,
44, 84, 95, 2, 9, 42, 4] in general. Moreover, this information
can be represented in many different formats, such as physical
attributes, geometric properties, interactions, object bounding
boxes, or motion forecasting. We observe that most tasks of
interests humans perform are with their hands. We thus focus
on training our model to predict hand-object interactions and
hand motion.

We present HRP, a simple and effective representation
learning approach that injects hand-object interaction priors into

a self-supervised network, fθ, using an automatically generated
human affordance dataset, DH (see above for definitions and
dataset mining approach). HRP is illustrated in Fig. 2, and the
following sections describe its implementation in detail.

A. Training HRP

The initial network fθ is fine-tuned using batches sampled
from the human dataset: (It, ct, ht, bt) ∼ DH , where ct, ht,
and bt are contact, hand, and object affordances corresponding
to image It (see Sec. III-B for definitions). Some frames may
not include all 3 affordances, so we include 3 mask variables –
m

(c)
t ,m

(h)
t ,m

(b)
t – so the missing values can be ignored during

training. We add 3 small affordance modules – pc, ph, pb – on
top of fθ that are trained to regress the respective affordances
for It. This results in the following three loss functions:

Lct = ||ct − pc(fθ(It))||2 (1)

Lhand = ||ht − ph(fθ(It))||2 (2)

Lobj = ||bt − pb(fθ(It))||2 (3)

The full loss is:

L = m
(c)
t λctLct +m

(h)
t λhandLhand +m

(b)
t λobjLobj (4)

Where the λs are hyper-parameters that control the relative
weight of each affordance loss. We empirically found λobj =
0.05, λct = 0.005, λhand = 0.5 to be optimal for downstream
performance (see Appendix E).

B. Implementation Details

Our affordance dataset (DH ) is at least an order of magnitude
smaller than the pre-training image dataset initially used by the
baseline representation (e.g., ImageNet has 1M frames v.s. our
150K). To preserve the useful features learned from the larger
pre-training distribution, we keep most of the parameters in θ
fixed during HRP fine-tuning. Specifically, we only fine-tune the
baseline network’s normalization layers and leave the rest fixed,
which has been shown to be an effective approach [27, 97].
In the case of our ViT-B this amounts to fine-tuning only the
LayerNorm parameters γ and β:

LayerNorm(x) =
x− µ

σ
γ + β (5)

These parameters are fine-tuned to minimize L using
standard back-propagation and the ADAM [48] optimizer.
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Fig. 5: Our experiments consider 5 unique manipulation tasks, ranging from classic block-stacking to a multi-stage toasting
scenario. These tasks are implemented on 3 unique robot setups, including a high Degree-of-Freedom dexterous hand (right).
The 3 camera views shown – front, ego, and side views (for xArm/dexterous hand) – are the same views ingested by the policy
during test-time. Note that 3 of the tasks consider 2 unique camera views in order to test for robustness!

V. EXPERIMENTAL DETAILS

Our contributions are validated using a simple empirical
formula: first, HRP is applied to each baseline model (listed
below). Then, (following standard practice [64, 57, 20]) the
resulting representation is fine-tuned into a manipulation
policy using behavior cloning. Details for each stage are
provided below, and the HRP is illustrated in Fig. 2.

Baseline Representations: We chose 6 representative, SOTA
baselines from both the vision and robotics communities:

1) ImageNet MAE was pre-trained by applying the Masked
Auto-Encoders [40] (MAE) algorithm to the ImageNet-
1M dataset [21]. It achieved SOTA performance across
a suite of vision tasks, and is the first self-supervised
representation to beat supervised pre-training. We use the
standard Masked Auto Encoder training scheme for this,
using hyperparmaeters from MAE [40].

2) Ego4D MAE was trained by applying the MAE algo-
rithm to a set of 1M frames sampled from the Ego4D
dataset [33]. For consistency with prior work, we use the
same 1M frame-set sampled by the R3M authors [64]. We
use the standard Masked Auto Encoder training scheme
for this, using hyperparmaeters from MAE [40].

3) CLIP [69] is a SOTA representation for internet data. It
was learned by applying contrastive learning [65] to a large
set natural language - image pairs crawled from internet
captions. We used publicly available model weights.

4) DINO [8] was trained using a self-distillation algorithm
that encourages the network to learn local-to-global
image correspondences. DINO’s emergent segmentation
capabilities could be well suited for robotics, and it has
already shown SOTA performance in sim [7]. We used
publicly available model weights.

5) MVP [70] was trained by applying MAEs to a mix
of in-the-wild datasets (100 DoH [81], Ego4D [33],
etc.). The authors showed strong performance on various
manipulation tasks. We used publicly available model
weights.

6) VC-1 [57] was trained in a similar fashion to MVP, but
used a larger dataset mix. It showed strong performance
on visual navigation tasks. We used publicly available
model weights.

Note that each baseline is parameterized with the same
ViT-B encoder w/ patch size 16 (see Sec. III-B), to ensure
apples-to-apples comparisons.

Policy Learning: Each representation is evaluated on
downstream robotic manipulation tasks, by fine-tuning it
into a policy (π) using Behavior Cloning [68, 77, 73]. Note
that π must predict the expert action (at – robot motor
command) given the observation (ot – input image and
robot state): at ∼ π(·|ot). And π is learned using a set of
50 expert demonstrations D = {τ1, . . . , τ50}, where each
demonstration τi = [(o0, a0), . . . , (oT , aT )] is a trajectory
of expert observation-action tuples. In our case, π is
parameterized by a small 2-layer MLP (p) placed atop the
pre-trained encoder p(f(ot)) that predicts a Gaussian Mixture
policy distribution w/ 5 modes. Both the policy network and
visual encoder are optimized end-to-end (using ADAM [48]
w/ lr = 0.0001 for 50K steps) to maximize the log-likelihood
of expert actions: maxp,f log(π(at|p(f(ot)))). During test
time actions are sampled from this distribution and executed
on the robot: at ∼ π(·|p(f(ot))). This is a standard evaluation
formula that closely follows best practices from prior robotic
representation learning work [59, 20].
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Fig. 6: We apply HRP to 6 different baseline representations and plot how it affects performance on average across the toasting, pouring,
and stacking tasks. This evaluation procedure is repeated using two distinct cameras (shown in Fig. 5) in order to test if HRP representation
are robust to view shifts. We find that HRP representations consistently and substantially outperform their vanilla baselines, and that this
effect holds across both the front (left) and ego (right) cameras. In fact, our strongest representation – ImageNet + HRP– delivers SOTA
performance on both views!

Real World Tasks: We fine-tune policies for each rep-
resentation on the 5 diverse tasks listed below, which are
implemented on 3 unique robotic setups, including a dexterous
hand (illustrated in Fig. 5). 50 expert fine-tuning demonstrations
were collected for each task via expert tele-operation. Note
that the stacking, pouring, and toasting tasks were evaluated
twice using different camera views to test robustness!

• Stacking: The stacking task requires the robot to pick
up the red block and place it on the green block. During
test time both blocks’ starting positions are randomized
to novel locations (not seen in training). A trial is marked
as successful if the robot correctly picks and stacks the
red block, and half successful if the red block is unstably
placed on the green block. This task is implemented on
a Franka robot and uses both an Ego and Front camera
viewpoint.

• Pouring: The pouring task requires the robot to pick up
the cup and pour the material (5 candies) into the target
bowl. During test time we use novel cups and bowls
and place each in new test locations. This task’s success
metric is the fraction of candies successfully poured (e.g.,
2/5 candies poured → 0.4 success). This task was also
implemented on the Franka using Ego and Front cameras.

• Toasting: The toasting task requires the robot to pick up
a target object, place it in the toaster oven, and shut the
toaster. This is a challenging, multi-stage task. During
test time the object type, and object/toaster positions are
both varied. A test trial is marked as successful if the
whole task is completed, and 0.5 successful if the robot
only successfully places the object. This is the final task
implemented on Franka w/ Ego and Front camera views.

• Pot on Stove: The stove task requires picking up a piece

of meat or carrot from a plate and placing it within a
pot on a stove. During test time, novel “food” objects are
used and the location is randomized. A trial is marked as
successful if the food is correctly placed in the pot. This
task is implemented on a xArm and uses the side camera
view.

• Hand Lift Cup This task requires a dexterous hand to
reach, grasp, and lift up a deformable red solo up. The
hand’s high dimensional action space (R20) makes this
task especially challenging. A trial is marked successful
if the cup is stably grasped and picked. This task is
implemented on a custom dexterous hand using a side
camera view.

VI. RESULTS

Our experiments are designed to answer the following:
1) Can HRP improve the performance of the pre-trained

baseline networks (listed above)? Does the effect hold
across different camera views and/or new robots? (see
Sec. VI-A)

2) Our affordance labels are generated using off-the-shelf
vision modules – does distilling their affordance outputs
into a representation (via HRP) work better than sim-
ply using those networks as encoders? (see Sec. VI-B)

3) How does HRP compare against alternate forms of
supervision on the same human video dataset? (see
Sec. VI-C)

4) How important are each of the three affordance losses for
HRP’s final performance? And is it really best to only
fine-tune the LayerNorms and leave the other weights
fixed? (see Sec. VI-D)

5) Can HRP handle scenarios with OOD distractor objects
during test time? (see Sec. VI-E)
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Fig. 7: This chart applies an ablated HRP method (full fine-tuning) to
the 6 baseline representations, and compares their average performance
v.s. standard HRP representations on the toasting, pouring, and
stacking tasks (front cam). We find that LayerNorm only fine-tuning
is almost always superior.

6) Can HRP representations work with different imita-
tion learning pipelines, like diffusion policy [11]? (see
Sec. VI-F)

Note that all experiments were conducted on real robot
hardware, and the models were all tested back-to-back (i.e.,
using proper A/B evaluation) using 50+ trials per model to
guarantee statistical significance. Note that all of our figures
and tables report success rates (sometimes averaged across
the toasting, stacking, and pouring tasks) alongside std. err. to
quantify experimental uncertainty – i.e. success%± std. err..

A. Improving Representations w/ HRP

To begin, we evaluate the 6 baseline representations
(detailed in Sec. V) on the toasting, pouring, and stacking
tasks using the front camera view. Then, we apply HRP to
each of these baselines, and evaluate those 6 new models
on the same tasks. Average success rates across all 3
tasks are presented in Fig. 6 (left), and the full table is in
the Appendix B. First, this experiment demonstrates that
ImageNet MAE is still highly competitive on real-world
manipulation tasks when compared to other self-supervised
representations from the vision [33, 8], machine learning [69],
and robotics communities [92, 57]. Second, we show that
HRP uniformly boosts performance on downstream robotics
tasks – i.e., baseline + HRP > baseline for every
baseline representation considered! Thus, we conclude that
the affordance information injected by our method is highly
useful for robot learning, and (for now) cannot be learned in a
purely self-supervised manner.

Second Camera View: A common critique is that robotic
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Fig. 8: We drop each of the 3 losses in HRP, and compare the
ablated method’s average performance (across the toasting, pouring,
stacking tasks) against full HRP representations. Due to the number
of ablations involved, this experiment is only run on the Ego4D,
ImageNet, and VC-1 base models. We find that the object and
hand losses are critical for good performance, but the contact loss
only makes a significant impact on the Ego4D base model.

Teacher ResNet HRP Models
Front Cam 100DoH [81] w/ Ego4D w/ ImageNet w/ CLIP

Toasting 35%± 15% 83% ± 9% 75%± 10% 50%± 11%
Pouring 34%± 13% 60% ± 11% 48%± 12% 39%± 11%
Stacking 0% 77% ± 10% 70%± 11% 57%± 11%

Average 35%± 10% 73% ± 6% 64%± 7% 48%± 6%

TABLE I: This table compares 3 representations trained w/ HRP
against the teacher ResNet [81] that generated our human affordance
dataset (see Sec. III-B). We find that the ResNet teacher under-
performs even the worst HRP representation (fine-tuned from CLIP),
even after excluding the stacking task, which it failed on.

representations perform very differently when the camera
view (even slightly) changes. To address this issue, we
replicated the first experiment using a radically different ego
view, where the camera is placed over the robot’s shoulder
(i.e., on its “head”). While perhaps a more realistic view,
it is significantly more challenging due to the increased
robot-object occlusion. Average success rates are presented in
Fig. 6 (right), and a per-task breakdown is in Appendix C.
Note that our findings replicate almost exactly from the
front camera view. The ImageNet MAE representation is
still competitive with the other baselines, and applying HRP
uniformly improves the baseline performance. In addition,
we find that HRP injects a higher level of robustness
to camera view shifts, when compared to the baselines.
For example, we find that ImageNet + HRP performs
the same on the ego and front camera, even though the
ImageNet baseline clearly prefers the front cam. This
general effect holds (to varying degrees) across all six baselines!



Ego4D ImageNet CLIP
+ HRP + Semantic + HRP + Semantic + HRP + Semantic

Toasting 83% ± 9% 25%± 13% 75%± 10% 40%± 14% 50% ± 11% 20%± 13%
Pouring 60% ± 11% 30%± 13.4% 48% ± 12% 26%± 11% 39% ± 11% 22%± 10%
Stacking 77% ± 10% 30%± 11% 70% ± 11% 40%± 12% 57% ± 11% 30%± 13%

Average 73% ± 6% 28%± 7% 64% ± 7% 35%± 7% 48% ± 6% 24%± 7%

TABLE II: We create Semantic representations by fine-tuning the Ego4D, ImageNet, and CLIP baselines using a classification loss,
instead of HRP’s affordance loss. Note that the exact same Ego4D clips (see Sec. III-B) are used during semantic fine-tuning, thanks to
object class labels generated automatically by Detic [101]. The sematic representations were evaluated (using the same BC pipeline) on the
Toasting, Pouring, and Stacking tasks, and compared against their HRP counterparts. Success rates (and standard error) are reported above.
We find that the affordance supervision provided by HRP is vastly superior to the semantic alternative.

Ego4D ImageNet
w/ HRP Baseline w/ HRP Baseline

Pot on Stove 50% ± 17% 40%± 16% 60% ± 16% 40%± 16%
Hand Lift Cup 50% ± 17% 40%± 16% 50% ± 17% 30%± 15%

TABLE III: We present results of Ego4D + HRP and ImageNet
+ HRP, as well as the respective baselines on the x-Arm (Pot on
Stove) and a dexterous hand task (Lift Cup). We see that HRP can
even boost performance in multiple morphologies, including a high-
degree of freedom dexterous hand [83].

Scaling to More Robots: Finally, we verify that HRP represen-
tations can provide benefits on other robotic hardware setups.
Specifically, we compare Ego4D + HRP and ImageNet +
HRP versus the respective baselines on the Pot on Stove (xARM)
and Hand Lift Cup (dexterous hand) tasks. Results are presented
in Table III. Note that HRP representations provide consistent
and significant performance during policy learning on these
radically different robot setups, which both also use a unique
side camera view. This gives us further confidence in HRP’s
view robustness and demonstrates that these representations are
not tied to specific hardware setups, and can scale to complex
morphologies like dexterous hands.

B. Distillation w/ HRP Improves Over Label Networks

It is clear that applying HRP to self-supervised represen-
tations results in a consistent boost. However, the hand,
object, and contact affordance labels for HRP themselves come
from neural networks (see Sec. III-B) – specifically we use
the ResNet-101 [38] detector from 100DoH [81] as a label
generator for our active object and contact affordance. The hand
affordance we use comes from FrankMocap [72], which uses
100DoH [81] as a base model. Thus, does distilling labels from
this detector via HRP actually provide a benefit over simply
using the 100DoH model itself as a pre-trained representation?
To test this question, we fine-tune policies on the toasting,
pouring, and stacking (front cam) tasks and compare them
against HRP applied to ImageNet, Ego4D, and (the weakest
model) CLIP (see Table I). In all cases, our representation
handily beats the 100DoH policy. So while the affordance
labels can dramatically boost policy learning (via HRP), the
source/teacher models are not at all competitive on robotics
tasks.

Initialization w/ HRP MAE Initialization

Ego4D 40% ± 15% 15%± 11%
ImageNet 40% ± 15% 40% ± 15%

TABLE IV: This table compares Ego4D + HRP and ImageNet +
HRP representations against their respective baselines on a stacking w/
distractors task. Here the robot must successfully complete the usual
stacking task, when extraneous objects (an orange carrot, and a green
bowl) are added to the scene. We find that Ego4D + HRP improved
over its baseline on this task, but ImageNet + HRP performed the
same as its baseline.

C. Comparing Against Alternate Forms of Supervision

We now analyze if HRP’s losses are better suited for
robotics tasks than an alternate supervision scheme. To be
clear, the previous results already demonstrated that HRP +
Ego4D out-performed the Ego4D baseline by up to 20% (see
Fig. 6; left), despite being sourced from the same image data.
However, it could be that the additional fine-tuning step with
the 100K filtered interaction clips is responsible, and the
specific affordance losses are not key. To test this, we ran
a modified version of HRP using a semantic classification loss,
instead of our affordance hand-object losses. The ground-truth
labels for each image were obtained using the Detic object
detector [101]. We then similarly fine-tuned the ImageNet,
Ego4D, and CLIP baseline representation using these labels,
and compared them against the respective HRP models on the
toasting, pouring, and stacking tasks. The results are presented
in Table II We find that the HRP models perform significantly
better on every task. Thus, we conclude that HRP’s affordance
losses play an important role in boosting performance (i.e., it’s
not just data or extra fine-tuning).

D. What Design Decisions are Important?

The following section ablates the key components of HRP
to evaluate their relative importance. First, we apply HRP to
each of the 6 baseline representations again, but this time
none of the weights are kept fixed (see Sec. IV-B). These
representations are fine-tuned on the toasting, stacking, and
pouring tasks (front cam), and compared against the original
HRP representations in Fig. 7. Note that fine-tuning all the
layers results in a substantial performance hit on average, and
this trend is consistent regardless of the base representation!
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Fig. 9: This figure tests if HRP representations can boost performance
when using a radically different imitation learning framework – namely
Diffusion Policy [11]. We evaluate diffusion policies (following the
U-Net + state action formula described by Chi et. al [11]) on the
toasting, pouring, and stacking tasks using 3 different visual encoders:
the default ResNet encoder from RoboMimic [59], the ImageNet +
MAE baseline, and our HRP + ImageNet features. We find a clear
improvement when using HRP weights, which suggests that HRP is
applicable to different imitation learning frameworks!

Thus, we conclude fine-tuning only the layer norms when
applying HRP is the correct decision.

Next, we ablate each of the affordance losses in Eq. 4,
by applying HRP three times: once with λct = 0, then with
λhand = 0, and finally λobj = 0. This process is repeated using
3 different base models; ImageNet, Ego4D, and VC-1. This
creates 9 ablated models (3 losses x 3 initializations) that are
compared versus the full HRP models on the toasting, pouring,
and stacking tasks. The average results are presented in Fig. 8,
and the full, per-task breakdown is presented in the Appendix D.
We find that removing the object (Eq. 3) and hand (Eq. 2)
losses uniformly results in significant performance degradation.
Meanwhile, the contact loss (Eq. 1) only provides a significant
boost for the Ego4D base model but does not affect the others.
Thus, we conclude that object and hand losses are critical for
our method, while the contact loss is more marginal, most likely
due to the fact that the extraction of contacts is a relatively
noisy process.

E. Novel Distractors During Test-Time

We evaluate the performance of HRP and baseline approaches
in OOD settings, by adding extraneous “distractor” objects (an
orange carrot and a light green bowl) in the stacking task. The
robot must successfully ignore the distractor and complete the
task. Results are presented in Table IV. We found that both
ImageNet + HRP and ImageNet had the same level of
robustness to distractors. Meanwhile, Ego4D’s performance
dropped substantially, while Ego4D + HRP remained robust.
Our hypothesis is that human data by itself does not contain
enough information to allow for OOD tasks. However, using
HRP allows for more focus on task-relevant features, even

when the representation is trained on less diverse data.

F. Evaluating w/ Diffusion Policy

Finally, we analyze if HRP representations offer improve-
ments when using a radically different imitation learning
framework, like diffusion policy [11]. Specifically, we adopt the
original U-Net action prediction head and environment setup
from Chi et. al. [11], but replace their ResNet visual encoder
(inspired from RoboMimic [59]) with our HRP + ImageNet
ViT-B model. Then we compare this HRP enhanced diffusion
policy implementation, against (diffusion agents which use)
both the original ResNet encoder and the baseline ImageNet
ViT-B. Results for the (Franka) stacking, pouring, and toasting
tasks are presented in Fig. 9. We find that HRP + ImageNet
significantly improves over both alternatives (76% for HRP
v.s., 56% for Chi et. al.’s implementation [11]), despite using
a radically different imitation learning objective/setup! Thus,
we conclude that HRP representations can boost performance
across different setups.

VII. DISCUSSION AND FUTURE WORK

In this paper, we investigate human affordances as a strong
prior for training visual representations. Thus, we present HRP,
a semi-supervised pipeline that extracts contact points, hand
poses, and activate objects from human videos, and uses these
affordances for fine-tuning representations. HRP improves base
model performance drastically, for five different, downstream
behavior cloning tasks, across three robot morphologies and
three camera views. All components of our approach, including
LayerNorm tuning, our three affordances, and our distillation
process (from affordance labels to representations) are im-
portant for the model’s success. One key limitation of this
approach is that it has only been tested on imitation settings
in this paper. In the future, we hope to not only scale this
approach to many more tasks and robot morphologies, but also
incorporate HRP in other robot learning paradigms such as
reinforcement learning or model based control.
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Han, Kanishka Rao, Karl Pertsch, Karol Hausman,
Keegan Go, Keerthana Gopalakrishnan, Ken Goldberg,
Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka,
Kevin Zhang, Keyvan Majd, Krishan Rana, Krishnan
Srinivasan, Lawrence Yunliang Chen, Lerrel Pinto,
Liam Tan, Lionel Ott, Lisa Lee, Masayoshi Tomizuka,
Maximilian Du, Michael Ahn, Mingtong Zhang, Mingyu
Ding, Mohan Kumar Srirama, Mohit Sharma, Moo Jin
Kim, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess,
Nikhil J Joshi, Niko Suenderhauf, Norman Di Palo,
Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver
Kroemer, Pannag R Sanketi, Paul Wohlhart, Peng Xu,
Pierre Sermanet, Priya Sundaresan, Quan Vuong, Rafael
Rafailov, Ran Tian, Ria Doshi, Roberto Martı́n-Martı́n,
Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Ju-
lian, Samuel Bustamante, Sean Kirmani, Sergey Levine,
Sherry Moore, Shikhar Bahl, Shivin Dass, Shuran Song,
Sichun Xu, Siddhant Haldar, Simeon Adebola, Simon
Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker,
Stephen Tian, Sudeep Dasari, Suneel Belkhale, Takayuki
Osa, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao,
Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao,
Travis Armstrong, Trevor Darrell, Vidhi Jain, Vincent
Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard,
Xi Chen, Xiaolong Wang, Xinghao Zhu, Xuanlin Li,
Yao Lu, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu,
Ying Xu, Yixuan Wang, Yonatan Bisk, Yoonyoung Cho,
Youngwoon Lee, Yuchen Cui, Yueh hua Wu, Yujin Tang,
Yuke Zhu, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo,
Zhuo Xu, and Zichen Jeff Cui. Open X-Embodiment:
Robotic learning datasets and RT-X models, 2024. 2

[13] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos,
Davide Moltisanti, Jonathan Munro, Toby Perrett, Will
Price, and Michael Wray. Scaling egocentric vision: The
epic-kitchens dataset. In ECCV, 2018. 3

[14] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos,
Davide Moltisanti, Jonathan Munro, Toby Perrett, Will
Price, and Michael Wray. Scaling egocentric vision:
The epic-kitchens dataset. In European Conference on
Computer Vision (ECCV), 2018. 3

[15] Ahmad Darkhalil, Dandan Shan, Bin Zhu, Jian Ma,
Amlan Kar, Richard Higgins, Sanja Fidler, David Fouhey,
and Dima Damen. Epic-kitchens visor benchmark: Video
segmentations and object relations. Advances in Neural
Information Processing Systems, 35:13745–13758, 2022.
3

[16] Pradipto Das, Chenliang Xu, Richard F Doell, and
Jason J Corso. A thousand frames in just a few words:
Lingual description of videos through latent topics and
sparse object stitching. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 2634–2641, 2013. 3



[17] Sudeep Dasari and Abhinav Gupta. Transformers for one-
shot visual imitation. In Conference on Robot Learning,
pages 2071–2084. PMLR, 2021. 2

[18] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair,
Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh,
Sergey Levine, and Chelsea Finn. Robonet: Large-scale
multi-robot learning. arXiv preprint arXiv:1910.11215,
2019. 2

[19] Sudeep Dasari, Jianren Wang, Joyce Hong, Shikhar
Bahl, Yixin Lin, Austin S Wang, Abitha Thankaraj,
Karanbir Singh Chahal, Berk Calli, Saurabh Gupta,
et al. Rb2: Robotic manipulation benchmarking with a
twist. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. 2

[20] Sudeep Dasari, Mohan Kumar Srirama, Unnat Jain, and
Abhinav Gupta. An unbiased look at datasets for visuo-
motor pre-training. In Conference on Robot Learning.
PMLR, 2023. 1, 3, 5

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009. 1, 2, 5

[22] Carl Doersch. Tutorial on variational autoencoders. arXiv
preprint arXiv:1606.05908, 2016. 3

[23] D Eigen and R Fergus. Predicting depth, surface
normals and semantic labels with a common multi-scale
convolutional architecture. corr, abs/1411.4734. arXiv
preprint arXiv:1411.4734, 2014. 3

[24] Antonino Furnari and Giovanni Maria Farinella. Rolling-
unrolling lstms for action anticipation from first-person
video. TPAMI, 2020. 3

[25] Antonino Furnari, Sebastiano Battiato, Kristen Grau-
man, and Giovanni Maria Farinella. Next-active-object
prediction from egocentric videos. Journal of Visual
Communication and Image Representation, 2017. 3

[26] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. Red:
Reinforced encoder-decoder networks for action antici-
pation. arXiv preprint arXiv:1707.04818, 2017. 3

[27] Angeliki Giannou, Shashank Rajput, and Dimitris Pa-
pailiopoulos. The expressive power of tuning only the
normalization layers. arXiv preprint arXiv:2302.07937,
2023. 4

[28] James Jerome Gibson. The senses considered as
perceptual systems, volume 2. 3, 4

[29] JJ Gibson. The ecological approach to visual perception.
Houghton Mifflin Comp, 1979. 3

[30] Rohit Girdhar and Kristen Grauman. Anticipative video
transformer. In ICCV, 2021. 3

[31] Mohit Goyal, Sahil Modi, Rishabh Goyal, and Saurabh
Gupta. Human hands as probes for interactive object
understanding. In CVPR, 2022. 3

[32] Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jack-
son Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al.

Ego4d: Around the world in 3,000 hours of egocentric
video. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
18995–19012, 2022. 16

[33] Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jack-
son Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al.
Ego4d: Around the world in 3,000 hours of egocentric
video. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
18995–19012, 2022. 1, 2, 3, 5, 7

[34] Abhinav Gupta, Scott Satkin, Alexei A Efros, and
Martial Hebert. From 3d scene geometry to human
workspace. In CVPR, 2011. 3

[35] Abhinav Gupta, Adithyavairavan Murali,
Dhiraj Prakashchand Gandhi, and Lerrel Pinto.
Robot learning in homes: Improving generalization and
reducing dataset bias. Advances in neural information
processing systems, 31, 2018. 2

[36] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behaviors
by latent imagination. In International Conference on
Learning Representations, 2020. 2

[37] M Hassanin, S Khan, and M Tahtali. Visual affordance
and function understanding: a survey. arxiv. arXiv
preprint arXiv:1807.06775, 2018. 3

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/
1512.03385. 8

[39] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020. 3

[40] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are
scalable vision learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16000–16009, 2022. 1, 2, 3, 5

[41] De-An Huang and Kris M Kitani. Action-reaction:
Forecasting the dynamics of human interaction. In ECCV,
2014. 3

[42] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language
models. arXiv preprint arXiv:2307.05973, 2023. 4

[43] Ashesh Jain, Avi Singh, Hema S Koppula, Shane Soh,
and Ashutosh Saxena. Recurrent neural networks for
driver activity anticipation via sensory-fusion architec-
ture. In ICRA, 2016. 3

[44] Yuanchen Ju, Kaizhe Hu, Guowei Zhang, Gu Zhang,
Mingrun Jiang, and Huazhe Xu. Robo-abc: Affor-
dance generalization beyond categories via semantic
correspondence for robot manipulation. arXiv preprint
arXiv:2401.07487, 2024. 4

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


[45] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian
Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
et al. Qt-opt: Scalable deep reinforcement learning
for vision-based robotic manipulation. arXiv preprint
arXiv:1806.10293, 2018. 2

[46] Angjoo Kanazawa, Michael J. Black, David W. Jacobs,
and Jitendra Malik. End-to-end recovery of human
shape and pose. CoRR, abs/1712.06584, 2017. URL
http://arxiv.org/abs/1712.06584. 3

[47] Aditya Kannan, Kenneth Shaw, Shikhar Bahl, Pragna
Mannam, and Deepak Pathak. Deft: Dexterous fine-
tuning for real-world hand policies. CoRL, 2023. 2

[48] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4, 5, 16

[49] Hema S Koppula and Ashutosh Saxena. Anticipating
human activities using object affordances for reactive
robotic response. TPAMI, 2015. 3

[50] Tian Lan, Tsung-Chuan Chen, and Silvio Savarese. A
hierarchical representation for future action prediction.
In ECCV, 2014. 3

[51] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–
1373, 2016. 1, 2

[52] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian
Ibarz, and Deirdre Quillen. Learning hand-eye coor-
dination for robotic grasping with deep learning and
large-scale data collection. The International journal of
robotics research, 37(4-5):421–436, 2018. 2

[53] Shaowei Liu, Subarna Tripathi, Somdeb Majumdar, and
Xiaolong Wang. Joint hand motion and interaction
hotspots prediction from egocentric videos. In CVPR,
2022. 3, 16

[54] Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang
Wan, Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang,
and Li Yi. Hoi4d: A 4d egocentric dataset for category-
level human-object interaction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21013–21022, 2022. 3

[55] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris
McClanahan, Esha Uboweja, Michael Hays, Fan Zhang,
Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee,
et al. Mediapipe: A framework for building perception
pipelines. arXiv preprint arXiv:1906.08172, 2019. 3

[56] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayara-
man, Osbert Bastani, Vikash Kumar, and Amy Zhang.
Vip: Towards universal visual reward and represen-
tation via value-implicit pre-training. arXiv preprint
arXiv:2210.00030, 2022. 2, 4

[57] Arjun Majumdar, Karmesh Yadav, Sergio Arnaud,
Yecheng Jason Ma, Claire Chen, Sneha Silwal, Aryan
Jain, Vincent-Pierre Berges, Pieter Abbeel, Jitendra
Malik, et al. Where are we in the search for an artificial
visual cortex for embodied intelligence? arXiv preprint

arXiv:2303.18240, 2023. 1, 2, 3, 4, 5, 7, 16
[58] Priyanka Mandikal and Kristen Grauman. Dexvip:

Learning dexterous grasping with human hand pose
priors from video. In Conference on Robot Learning,
pages 651–661. PMLR, 2022. 2

[59] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n.
What matters in learning from offline human demonstra-
tions for robot manipulation. In Conference on Robot
Learning (CoRL), 2021. 5, 9, 16

[60] Esteve Valls Mascaro, Hyemin Ahn, and Dongheui Lee.
Intention-conditioned long-term human egocentric action
forecasting@ ego4d challenge 2022. arXiv preprint
arXiv:2207.12080, 2022. 3

[61] Austin Myers, Ching L Teo, Cornelia Fermüller, and
Yiannis Aloimonos. Affordance detection of tool parts
from geometric features. In ICRA), 2015. 3

[62] Tushar Nagarajan, Christoph Feichtenhofer, and Kristen
Grauman. Grounded human-object interaction hotspots
from video. In ICCV, 2019. 3

[63] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar
Bahl, Steven Lin, and Sergey Levine. Visual reinforce-
ment learning with imagined goals. Advances in neural
information processing systems, 31, 2018. 2

[64] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022. 1, 2, 3, 4, 5

[65] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018. 1, 3, 5

[66] Jyothish Pari, Nur Muhammad, Sridhar Pandian
Arunachalam, Lerrel Pinto, et al. The surprising effec-
tiveness of representation learning for visual imitation.
arXiv preprint arXiv:2112.01511, 2021. 4

[67] Lerrel Pinto and Abhinav Gupta. Supersizing self-
supervision: Learning to grasp from 50k tries and 700
robot hours. In 2016 IEEE international conference
on robotics and automation (ICRA), pages 3406–3413.
IEEE, 2016. 1, 2

[68] Dean A Pomerleau. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988. 2, 5

[69] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. CoRR,
abs/2103.00020, 2021. URL https://arxiv.org/abs/2103.
00020. 5, 7

[70] Ilija Radosavovic, Tete Xiao, Stephen James, Pieter
Abbeel, Jitendra Malik, and Trevor Darrell. Real-world
robot learning with masked visual pre-training. CoRL,
2022. 1, 2, 4, 5

[71] Nicholas Rhinehart and Kris M Kitani. Learning action

http://arxiv.org/abs/1712.06584
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020


maps of large environments via first-person vision. In
CVPR, 2016. 3

[72] Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmo-
cap: A monocular 3d whole-body pose estimation system
via regression and integration. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV) Workshops, pages 1749–1759, October 2021. 2,
3, 4, 8
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APPENDIX

A. Robot Controller Details

Franka: We use a 7-DOF Franka Emika Panda robot arm
with a parallel gripper, operating in delta end-effector action
space. We use a VR-based teleoperation system to collect
expert demos on Franka.
xArm: We use a 6-DOF xArm robot arm with a parallel gripper,
operating in absolute end-effector action space. We use an off-
the-shelf hand tracking system to collect expert demos on
xArm.
Dexterous Hand: We use a 6-DOF xArm robot arm with
a custom dexterous hand, operating in absolute end-effector
space.

For each task, the expert gets to practice for 30 to 60 mins
before collecting the demonstrations. We collect 50 expert
demonstrations for each of the tasks.

B. Front Cam: Full Task Performance Breakdown

TABLE V: Front Cam Performance Breakdown

Initial
Representation Method Toasting Pouring Stacking Avg. (Real)

Ego4D Baseline 0.58 0.36 0.60 0.51
Ours 0.83 0.60 0.77 0.73

ImageNet Baseline 0.53 0.45 0.47 0.48
Ours 0.75 0.48 0.70 0.64

CLIP Baseline 0.28 0.33 0.33 0.32
Ours 0.50 0.39 0.57 0.48

DINO Baseline 0.38 0.32 0.40 0.37
Ours 0.67 0.57 0.50 0.58

MVP Baseline 0.27 0.41 0.47 0.38
Ours 0.73 0.44 0.63 0.60

VC1 Baseline 0.52 0.33 0.57 0.47
Ours 0.83 0.34 0.53 0.57

We observe that HRP (Ours) consistently boosts the perfor-
mance across all three tasks for the front cam.

C. Ego Cam: Full Task Performance Breakdown

TABLE VI: Ego Cam Performance Breakdown

Initial
Representation Method Toasting Pouring Stacking Avg. (Real)

Ego4D Baseline 0.2 0.12 0.3 0.21
Ours 0.2 0.22 0.45 0.29

ImageNet Baseline 0.3 0.3 0.45 0.35
Ours 0.6 0.48 0.7 0.59

CLIP Baseline 0.2 0 0 0.07
Ours 0.275 0.02 0 0.1

DINO Baseline 0.35 0.32 0.3 0.32
Ours 0.45 0.7 0.55 0.57

MVP Baseline 0.175 0.32 0.45 0.32
Ours 0.3 0.4 0.65 0.45

VC1 Baseline 0.5 0.28 0.4 0.39
Ours 0.55 0.6 0.65 0.6

We also find that HRP (Ours) consistently boosts the
performance across all three tasks for the ego camera.

D. Ablation Breakdown

TABLE VII: Fine-Tuning Ablation Breakdown

Initial
Representation

Finetuning
Scheme Toasting Pouring Stacking Avg. (Real)

Ego4D All Weights 0.92 0.51 0.77 0.73
LayerNorm (Ours) 0.83 0.60 0.77 0.73

ImageNet All Weights 0.82 0.34 0.63 0.60
LayerNorm (Ours) 0.75 0.48 0.70 0.64

CLIP All Weights 0.23 0.27 0.13 0.21
LayerNorm (Ours) 0.50 0.39 0.57 0.48

DINO All Weights 0.57 0.39 0.40 0.45
LayerNorm (Ours) 0.67 0.57 0.50 0.58

MVP All Weights 0.45 0.39 0.47 0.43
LayerNorm (Ours) 0.73 0.44 0.63 0.60

VC1 All Weights 0.52 0.41 0.47 0.47
LayerNorm (Ours) 0.83 0.34 0.53 0.57

TABLE VIII: Loss Ablation Performance Breakdown

Initial
Representation Condition Toasting Pouring Stacking Avg.

(Real)

Ego4D No Contact 0.65 0.34 0.5 0.50
No Object 0.425 0.42 0.3 0.38
No Hand 0.625 0.48 0.4 0.50
Ours 0.9 0.66 0.75 0.77

Imagenet No Contact 0.625 0.64 0.7 0.66
No Object 0.525 0.52 0.55 0.53
No Hand 0.525 0.3 0.7 0.51
Ours 0.8 0.62 0.7 0.71

VC-1 No Contact 0.625 0.48 0.75 0.62
No Object 0.225 0.38 0.65 0.42
No Hand 0.5 0.44 0.4 0.45
Ours 0.525 0.44 0.8 0.59

Note: do not compare numbers between Table VIII and
the other tables. The loss ablation experiments were run on
a separate day, so all numbers were re-ran on that day. This
was done to ensure a proper A/B comparison between the all
methods in this table.

E. Loss Weighting Sweep
We swept through a range of weights for each of the losses

to narrow down on a particular set of loss weights for HRP
(presented in Table IX). These were based on relative orders
of magnitude of the ground truth labels in the dataset. We
empirically saw that increasing the loss weights by more than
0.5 negatively affected performance and led to collapse.

TABLE IX: We present the different affordance loss weights we ran
sweeps on.

Exp Loss Weights

HRP λobj = 0.05, λct = 0.005, λhand = 0.5
Drop Contact Only λobj = 0.05, λct = 0, λhand = 0.5
Drop Object Only λobj = 0, λct = 0.005, λhand = 0.5
Drop Hand Only λobj = 0.05, λct = 0.005, λhand = 0



F. Data Pipeline Description

To obtain human data, we first extract video clips from
Ego4D [32]. Our dataset contains approximately 1200 videos.
Each video is broken down semantically into smaller clips
by human annotators (as a part of the Ego4D). Our clips are
between 1 and 30 seconds. For a given clip, we pass every
frame through the 100 DOH model [81], which gives us hand
object contact information. These are {hl, hr, ol, or, cl, cr}. h
are the hand bounding boxes, o are the object bounding boxes
(which are in contact with the hand). c are contact variable (i.e.
fixed, portable, self or no contact). We only look at contacts
with fixed and portable. r or l represents the left or right hand.
Active object and hand trajectories used for our representations
are directly used. For contact points, it is assumed that at the
start of the clip there is no contact, from where we find the
frame of first contact t. Since per-frame predictions are noisy,
we run a filter [75] over the predictions. From the contact frame,
we obtain the hand-bounding box h and object bounding o.
Contact points are computed in the intersection of h and o,
and the exterior of the hand. This exterior is obtained via skin
segmentation (similar to [2, 53]. These contacts can then be
projected to previous frames in the clips by the homography
matrix Ht obtained via SIFT features.

G. Behavior Cloning Hyper-Parameters

We list the hyper-paramaters that we used for policy training
using behavior-cloning in this section. As shown in Figure 4, we
pass an image through the learned HRP visual representation
to obtain a 768-dimensional latent vector. This latent vector
is passed through a two-layer MLP with (512, 512) hidden
layer dimensions. To the output of the MLP we apply RELU
activation along with dropout regularization with prob=0.2 to
estimate the mean (µ), the mixing parameters (ϕ), and the
standard deviation (σ) of a Gaussian Mixture Model (GMM)
distribution with 5 modes.

We choose GMM model based on prior work [59] that
showed its crucial role in increasing BC performance. We
use ADAM optimizer [48] with the learning rate set to 1e-4,
l2 weight decay also set to 1e-4. We train policy for 50K
iterations. We also apply data augmentation (random crop and
random blur) for the input images. We use the same set of
hyper-parameters for both the real-world and the simulation
tasks.

H. Simulation Results

For simulation tasks, we choose 5 tasks from the Meta-
world [94] benchmark namely: BinPick, ButtonPress, Ham-
mering, Drawer Opening, and Assembly. This benchmark is
extensively used by the robot learning community. We used the
same camera viewpoint, object sets, and expert demonstrations
as used by prior work [57]. We report the average performance
on all 5 tasks in table X.

TABLE X: Sim Performance

Initial
Representation Method MetaWorld Avg Performance

Ego4D Baseline 0.656
Ours 0.580

ImageNet Baseline 0.556
Ours 0.664

CLIP Baseline 0.444
Ours 0.408

DINO Baseline 0.660
Ours 0.664

MVP Baseline 0.592
Ours 0.640

VC1 Baseline 0.576
Ours 0.648

I. Evaluation

For each task, we run around 50 trials (per model), at
various initial poses (for objects) and with different variations
in objects. In every task, about half the trials are from the
training distribution and half are from the test. The differences
in objects include different colors, shapes, and even semantic
differences: for example in the toasting task, plush toys were
tested instead of the vegetables used to train. Cups or bowls
were tested, instead of mugs that were used to train the pouring
task, etc.

Lighting is not controlled between train and test. We did try
to run all baselines and methods as closely together as possible
to avoid any confounding factors: i.e. for every trial, we ran
all the baselines and our method together. Across trials, we
allowed for variation in lighting conditions.

The results presented in the paper are the average of the
successes, on a scale from 0 to 1. We present the criteria for
success in each task:

• Stacking: 1 if the robot correctly picks and stacks the
red block, and 0.5 if the red block is unstably placed on
the green block.

• Pouring: The fraction of candies, out of 5, successfully
poured (e.g., 2/5 candies poured → 0.4 success).

• Toasting: 1 if the whole task is completed, and 0.5
successful if the robot only successfully places the object.

• Pot on Stove: 1 if the food is correctly placed in the pot.
• Hand Lift Cup 1 if the cup is stably grasped and picked.
We also compute the standard error for these trials and show

that as our confidence in Tables 1-3, and as an error bar in
Figures 5-7.


